Scientific Data Analysis Web Application

CSCl 4308 Senior Capstone

Seongmin Choi, Robert Crimi, Connor Guerrieri, Bo Han, Hannah Keller, and Hannah
Thomas

Documentation

4

‘ NCAR @]’ lBJgiL\Jllgresrity of Colorado

Project Overview
Overview
The Solution
Future Steps
Architecture
Architecture Diagram and Explanation
Folder Structure and Files of Note
Installation
Running the Application Server
Pyutilib.workflow

R Integration

Summary
Version

Install the packages
NetCDF Packages
For developers
NCL Integration
Summary
Version
For developers
NCL Error Codes
Tool Versions
Maintainability
Adding New Tasks
Develop Analysis Scripts
Create Workflow Task
Create an HTML Form for the Task
Create Javascript Interface for the Task
Changes to Workflow Library
Workflow Visualization
Research
Tangelo and Arbor
Summary
The Workflow GUI
Arbor Status
pyutilib.workflow

Summary
MongoDB

Summary
Saving a Copy of a Workflow

Project Overview

Overview

Over the past decade it has become increasingly clear that the Earth’s climate is changing
rapidly. Governments and private institutions have progressively invested more resources into
the study of the impacts of climate change, but the are many barriers that currently slow down
the advancement of scientific understanding. Due to the variety of computer simulation
models, data formats, and data analysis languages, one of the largest barriers facing the
progression of scientific understanding is reproducibility, or the ability to reproduce and verify
the results of another’s analysis. The goal of our project is to create a python web based
application that not only allows users to easily build and run data analysis workflows, but do
so without the need of specific programming and climate analysis knowledge.

Current Problem

The goal of the climate modeling community is to provide reliable, accurate, and credible
information to those who make decisions on how or whether to respond to climate change.
Two of the largest barriers currently slowing down the advancement of scientific
understanding are the expertise needed to run analyses and the inability to effectively share
and reproduce these analyses. Climate scientists interested in expanding their knowledge not
only need to be experts in their scientific field, but also in the installation and configuration of
software, translating data formats, and variety of analysis tools. Impact users, decision
makers outside the climatology field that are invested in the impacts of climate change, such
as city planners, utility managers, or park rangers, need easy access to climate data and a
way to analyze this data without scientific expertise. Not only are these users facing
challenges to analyze and access climate data, but there is specific expertise around handling
the data, such as understanding model interactions and projections. For both scientists and
impact users, being able to access and analyze climate data as it stands today requires too
much overhead to make it an effective process.

The Solution

The overall goal of the project was to break down the different aspects of creating a climate
data analysis workflow into steps that were easy-to-use, reusable, and easily shareable. Our
solution is a python-based web application that allows users to dynamically create data
workflows by connecting different pre-packaged analysis steps. To make it intuitive for a user
to keep track of their workflow, we incorporated a visualization that displays each step and
their connections to other steps. As each step is added, the workflow as a whole is run and
the user is given the option to download the data created after the latest step. Lastly, users
are able to save their workflows and are given a serial number for that workflow. Using the
serial number, a user can either upload that workflow and update or share the serial number
with another user to access.

The application is using a python based web framework, Tangelo, which was built specifically
to support agile data management and visualization. To structure the workflows on the back
end, we modified a python workflow library called pyutilib.workflow, which creates workflow
objects containing multiple tasks, or steps. Each step available for the workflows are either
NCL, NCAR Command Language, or R scripts which perform the actual analysis on the data
and are called through python. For the scope of the project we focused on using NARCCAP,
North American Regional Climate Change Assessment Program, data in NetCDF format, a
common climate data format. After each analysis step, a new NetCDF file is created and the
filename is then passed between steps and becomes available for the user to download. As
steps are added to the workflow, the workflow library sends an updated workflow to a plugin in
Tangelo, called Nodelink, that dynamically updates the visualization seen by the user.
Workflows and their corresponding output files get saved in a MongoDB database via another
Tangelo plugin, making them available for uploading or sharing given a corresponding serial
number.

Through python we were able to run a web server, utilize different analysis languages, and
support visualization to create an application for easy build out of scientific data analysis
workflows that can be reused and shared.

Future Steps

This project’s purpose was a proof of concept for a team at NCAR with the idea of expanding
on the platform we created. The idea is to add access to more databases other than
NARCCAP, add more analysis steps and steps that utilize more analysis languages, and
create a template in which users in the future are able to create the own steps and submit
them to be added to the application.

Architecture

Architecture Diagram and Explanation

=

OPeNDAP

8

The front end of Scientific Data Reproducible Workflows is purely HTML, CSS, and
Javascript.

The backend of Scientific Data Reproducible Workflows is mostly Python, with specific tasks
and analyses being implemented in NCL and R. The database for storing workflows is
MongoDB, and climate model data comes from the OPeNDAP NARCCAP servers.

To connect these two pieces, we use Tangelo. Tangelo is a web framework specializing in
data visualization. Javascript sends an HTTP GET request to the server for a python service.
The server runs the called service and returns a JSON string that can then be parsed by the
Javascript.

Folder Structure and Files of Note

- Scientific-Data
- Documentation
- index.html - The Documentation File. View this to see all code
documentation.
- naturaldocs
- Languages.txt - A configuration file for adding language support
to NaturalDocs
- Menu.txt - A configuration file for changing the organization of
the menu
- Topics.txt - A configuration file for adding topics/categories to the
documentation.
- NaturalDocs - The NaturalDocs binary and related files.
- pyutilib.workflow-3.5.1 - The modified pyutilib.workflow library.
- r_library - The R libraries necessary for running R-scripts
- tangelo_html
- ncarworkflow
- Ccss
- main.css - The css for the site.
- sidebar.css - The css for the analysis sidebar.
- javascript - The site javascript
- analysis - The javascript for individual tasks
- loadWorkflow.js - The javascript for loading a workflow
from the database
- workflowBuilder.js - The javascript for creating a workflow
- workflowvis.js - The javascript for modifying a workflow
and visualizing a workflow.
- plugin - Tangelo plugins
- ui - The ui plugin. Contains the code for the slide-out
panel.

- vis - The vis plugin. Contains the code for visualizing a

workflow.
- workflow - The workflow plugin.
- python
- customTasks - Contains the task class
files
- ncl - Contains the ncl files
- r - Contains the r files
- __init__.py - Contains all the functions for
manipulating workflows.
- python

- updateWorkflow.py - Contains service code that handles
temporary storage of workflows as well as handles calling
the correct functions to modify workflows.

- stepHTML - A folder containing the html for all available steps.
- config.yaml - A configuration file that tells tangelo which plugins
to load.
- index.html - The home page.
- loadWorkflow.html - The html page for loading a workflow.
- workflow-builder.html - The html page for building a workflow.
templates - Template files for each part of adding a task
- PluginTaskTemplate.py
- template.html
- template.js
- template.ncl
requirements.txt - The python package requirements for this software.
HowToUseNaturalDocs.txt - Instructions on how to use NaturalDocs
CommentingGuidelines.txt - Examples for formatting comments

Installation

Installing the Reproducible Scientific Workflows Applications is very straightforward.
First, install these languages and packages:

R (Version 3.1.3) - Install from http://cran.cnr.berkeley.edu/
Python (Version 2.7.6) - Install from https://www.python.org/downloads/
NCL (6.2.1 OPeNDAP Enabled) - Install from
https://www.ncl.ucar.edu/Download/install.shtml
e MongoDB (Version 2.6.9) - Install from http://docs.mongodb.org/manual/installation/

Second, clone the GitHub repository into your desired location.
$ git clone git@github.com:NCAR-Scientific-Data/Scientific-Data.git
OR

Fork the repository at https://github.com/NCAR-Scientific-Data/Scientific-Data and clone that
copy to your machine.

Third, cd into the newly created Scientific-Data folder. Then cd into the pyutilib.workflow-3.5.1
folder and run the following command:

$ python setup.py install

(Note: You may have to run the command as root or with sudo)

Then cd back into the Scientific-Data folder and run the following command:

$ pip install -r requirements.txt

Finally, to make sure the R tasks use the correct libraries, run the following command:

$ echo 'R_LIBS_USER="<Path_to_Scientific-Data>/r_library"' >
SHOME/ .Renviron

Now all dependencies of the Reproducible Scientific Workflows are installed and you can
safely run the app.

http://cran.cnr.berkeley.edu/
https://www.python.org/downloads/
https://www.ncl.ucar.edu/Download/install.shtml
http://docs.mongodb.org/manual/installation/
https://github.com/NCAR-Scientific-Data/Scientific-Data

Running the Application Server

To run the application after installation, simply run this command from
tangelo_html/ncarworkflow:

$ tangelo --config config.yaml

Optionally, if you need to run on a different port and the default port, use:

$ tangelo --config config.yaml --port <portnumber>

To specify a hostname besides localhost, you can use:

$ tangelo --config config.yaml --hostname <yourhostname>

And of course, you can combine these commands as necessary. To view all options for
running tangelo, go here: http://tangelo.readthedocs.org/en/v0.9/tangelo-manpage.html

http://tangelo.readthedocs.org/en/v0.9/tangelo-manpage.html

Pyutilib.workflow

Version
pyutilib.workflow-3.5.1

Installation
To install:
1) Navigate into pyutilib.workflow-3.5.1 as root
2) run “python setup.py install”

Any time there are changes made to the workflow library, this setup needs to be
re-run. If the changes are made by the library developers, the changes with comments “#
Robert Crimi” must be copied into the new library files

Summary

Pyutilib.workflow is the main framework for creating workflows in the system. With this
package, we are able to define a structure for scientific workflows. We are able to serialize
and deserialize these workflows to implement reproducible workflows. This package also
allows for workflows to be modified and to be included in other workflows. Finally, we can
modify the defined tasks to include a visualization for the site. For example, we can create
symbols for specific tasks, inputs, and outputs.

As of now, workflow objects are re-run every time there is a new, deleted, or modified
task; however, there is functionality in the workflow library to implement this. For example, the
task class implements the function “set_ready().” This function lets the workflow know that the
task already has a value for an output and to not run the task during workflow execution.

Integration

There have been several added methods to the workflow library. These can be found
within the workflow directory of the library. There are changes made to “task.py”,
“‘workflow.py”, and “port.py.” All changes are marked with the comment “# Robert Crimi.”
These changes allow for serialization and modification of workflows. Additional functions can
be found in the Tangelo plugin folder. These methods allow for the creation of workflows as
well as adding, deleting, and modifying tasks.

R Integration

Summary

R is a language and environment for statistical computing and graphics. It is a GNU project
which is similar to the S language and environment which was developed at Bell Laboratories
(formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be
considered as a different implementation of S. There are some important differences, but
much code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical
tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is

highly extensible. The S language is often the vehicle of choice for research in statistical

methodology, and R provides an Open Source route to participation in that activity.

One of R’s strengths is the ease with which well-designed publication-quality plots can be
produced, including mathematical symbols and formulae where needed. Great care has been
taken over the defaults for the minor design choices in graphics, but the user retains full
control.

Integration

A few data analysis calculations are done with R. Each calculation is implemented in a
function and all functions are stored in a R script. The R functions are called directly within
Python using the python library called rpy2 by:

import rpy2
import rpy.robjects as ro

load the R script
scriptName = <Path_to_the R _script>

ro.r[scriptName]

call the R function
ro.ri[<Name_of _the_R_function>]

Each python task can call one or more R functions from a single R script as needed for a
calculation.

Integration with R is currently a proof-of-concept as those R functions need to be enhanced
for further reliability.

10

http://www.gnu.org/

Version
3.1.3

Install the packages
R packages can be installed in R console by

> install.package("<name_of_the_package>")

The packages will be automatically install to:
<path_to_the_project_repo>/Scientific-Data/r_library

NetCDF Packages
ncdf

Summary: This package provides a high-level R interface to Unidata's NetCDF data files,
which is portable across platforms and includes metadata information in addition to the data
sets. With this package NetCDF files can be opened and data read in easily. It also allows for
easy creation of new NetCDF dimensions, variables, and files, and manipulate existing
NetCDF files. The interface provides considerably more functionality and is not compatible
with the old ‘netCDF’ package for R. There is a newer package that works with NetCDF called
ncdf4, the syntax of ncdf4 is more user friendly. It is recommended to switch to ncdf4 from
ncdf in the future.

For developers

1. All the R packages are under Scientific-Data/r_library. Before starting the server, make
sure R is searching for the libraries in the correct folder using this command:

$ echo 'R_LIBS USER="<Path_to_the where packages_are_installed>" >
$HOME/.Renviron

Otherwise, R will be unable to run, as it won'’t find the necessary libraries

2. GCMs generally use non-standard calendars. Usually they are 365-day or "noleap"
calendars, which means they have 365 days every year, and there is never a leap year with
366 days. However, some GCMs use a 360-day calendar with 12 months of 30 days each.
R's date format doesn't understand alternate calendars, so the results will be incorrect. You
may be able to solve this problem using the PCICt package, but it might also be easier to
calculate dates yourself.

3. The time coordinate in NARCCAP data comes at the *end* of the averaging period.

The daily maximum temperature for Jan 31st is the maximum temperature between 12:00 AM
and 12:00 PM on January 31st. In 24-hour time, that's 00:00 to 24:00. But 24:00 January

11

http://cran.r-project.org/web/packages/ncdf/ncdf.pdf
http://cran.r-project.org/web/packages/ncdf4/ncdf4.pdf

31st is actually 00:00 February 1st, and since the time coordinate comes at the end of the
period, the time for the January 31st maximum looks like it's on February 1st instead.

NCL Integration

Summary

NCL is used currently to do the majority of handling of the NetCDF files. Each NCL script
correlates to one task in the pyutilib.workflow. The python tasks create subprocesses that run
the NCL scripts with the arguments set by the user. Each NCL script should take in either an
OPeNDAP url or NetCDF filename on which to process and should output an updated
NetCDF file in the unique workflow folder.

Currently the unit conversion task, implemented in NCL, is a proof-of-concept task as it only
does temperature unit conversion and only checks for three variations of unit descriptions in
the NetCDF. For example the unit conversion looks for these variations within the source file:

"degC”/’degK”/“degF”
"C'I'KF”
"C“KI"F”

The output units are then written with the syntax “degC.” In the future it may be possible to
write a wrapper around the Unidata’s UDUNITS library in order to dynamically convert many
unit and variable types.

Version
6.2.1 OPeNDAP enabled

For developers

The subset task adds an attribute to its output file called MainVariable, which is used in
subsequent steps to keep track of the variable being processed, therefore each NCL script
added is required to maintain that attribute in its output NetCDF files.

Due to restrictions with the NARCCAP thredds server, we were not able to download full
variable files. In order to cut down on file size, the subset NCL file does an initial subset of the
data to the Continental United States (Lat: 25°- 45°, Lon: 245° - 285°). After the initial subset,
then the data is further filtered by the coordinates entered by the user.

Note: We have seen the subset task fail due to rejection of the OPeNDAP call from the
Thredds server, but often re-running the task succeeds.

Each NCL task script is responsible for checking if a workflow folder has already been created
and if not, creating one. Within that workflow folder is where each script will create its output
file with the naming convention ‘taskld_taskname.nc.” Only one NetCDF file per task should
be created, so the scripts should first remove old files before creating new ones.

12

NCL Error Codes

0 = success

1 = standard error

2 = missing parameter
3 = lat/lon out of range
4 = date out of range
5 = incorrect input

6 = conversion error

To add error codes to NCL scripts, use the ‘status_exit(#) function and then add a catch to
the parent python code to return an appropriate message to the user.

13

Tool Versions

The following list provides references to the tools used in the system, including version
numbers. These requirements can also be found in “requirements.txt”.

CherryPy==3.6.0
pyutilib.common==3.0.7
pyutilib.component.config==3.8
pyutilib.component.core==4.6.4
pyutilib.component.executables==3.5
pyutilib.misc==5.9.1
pyutilib.services==3.4
pyutilib.subprocess==3.6.2
pyutilib.workflow==3.5.1
PyYAML==3.11

rpy2==2.5.6
singledispatch==3.4.0.3
six==1.9.0

tangelo==0.9.0

ws4py==0.3.2

pymongo==3.0.1

To install these dependencies:
pip install -r requirements.txt

In addition to these tools, R, Python, and NCL were used. The following list contains version
numbers for these tools:

R==3.1.3
Python == 2.7.6
NCL ==6.2.1

There is no current mechanism for installing these dependencies, so they must be installed
manually.

14

Maintainability

Adding New Tasks

Tangelo comes with built-in plugins which provide the functionality for representing workflows
as a graph. In addition, Tangelo allows for custom plugins to be added. The “workflow builder”
portion of the system has been implemented as a Tangelo plugin. These can be found in the
“plugin/workflow/python” directory. Any changes that need to be made to the functionality of
adding, deleting, and modifying tasks should be made in this folder. Within this folder is a file
named “__init__.py”. This file holds the logic for the above mentioned functionality.

Also located in this directory is the folder named “customTasks”. This folder contains all of the
task files that users of the system can use in their workflows. Directly in this folder are python
files that contain the structure for implementing analysis scripts (NCL, R, etc.). This directory

also contains two folders (ncl and r). These folders contain the corresponding scripts that are
called within the python tasks. For example, the script in the ncl folder named “aggregate.ncl”
will be called in the python file named “taskAggregate.py”.

The following instructions provide the methods to add a new task:

Develop Analysis Scripts

The main data manipulation and analysis occurs in different analysis scripts, currently written
in NCL and R. To add another task script requires creating a script that takes in either an
OPeNDAP url or NetCDF filename as its datasource and output an updated NetCDF file. The
script must also create and/or maintain an attribute in the output file called MainVariable
which holds the main variable used in the analyses (ex: tasmin, tasmax, etc) . This is done in
order for the variable to be cascaded throughout the workflow process without the user
specifying it in each step.

Scripts should also make sure to copy all the metadata from the input NetCDF into its output,
updating any metadata corresponding to changes made in the script. Maintaining a file’s
projection information is particularly important for the plot steps, especially to allow the user to
plot in the file’s native projection.

The task scripts are also responsible for checking and/or creating a unique workflow folder
within the tangelo_html/ncarworkflow/python/data folder. These folders are simply named the
workflow Id, which is passed through the python task that calls the analysis script. Within that
folder is where scripts should create their output files, with the naming convention
‘taskid_taskname.nc’. Only one NetCDF file per task should be created, so scripts should
remove previous task files before writing new ones.

15

Scripts should be stored in their appropriate language folder under
tangelo_html/ncarworkflow/plugin/workflow/python/customTasks/

There are template scripts for NCL (template.ncl) and R for further details and creating
analysis task scripts.

Create Workflow Task

Once the analysis scripts have been created, python tasks need to be created in order to
integrate them in the workflows. Each task is a new class which get instantiated by the
workflow library. The task files need to be created in
tangelo_html/ncarworkflow/plugin/workflow/python/customTasks with the naming convention
PluginTaskName (ex: PluginTaskSubset). Each python task class consists of two parts, a
constructor and execute function.

Before adding the constructor and execute functions, the class needs to be added to the alias
repository in the pyutilib library. In order to do this these two lines must be added at the
beginning of each class:

pyutilib.component.core.alias("taskName")
alias = "taskName"

The constructor for a new task should follow the template below:

def __init__(self,*args,*x*xkwds):
pyutilib.workflow.Task.__init__(self,*args,*x*xkwds)
self.inputs.declare(‘inputl’)
self.inputs.declare(‘input2’)
self.outputs.declare(‘result’)

The inputs are the arguments needed for the corresponding analysis script and the output
should generally be named ‘result’ and contain the filename of the result NetCDF.

The execute function will be different depending on the language the analysis script is written
in. For example, NCL scripts are called in the execute function by creating a subprocess,
where as R scripts are using a python library to access R functions. Regardless of the
language, the execute functions should follow the below template:

def execute(self):
Inputl = self.inputl
Input2 = self.input2
wid = self.workflowID
tid self.uid

16

args = [Inputl, Input2]
try:
callAnalysisScript(args)
catch:
script errors
self.result = “data/wid/tid_task.nc”

The wid and tid are necessary parameters for every analysis script as they are used to create
workflow folders and output files.

Lastly, new python tasks need to be added to the __init__.py file in
tangelo_html/ncarworkflow/plugin/workflow/python/customTasks:

from PluginTaskName import PluginTaskName

There is a template PluginTaskTemplate for a more detailed example of how to create the
python classes for a new task.

Create an HTML Form for the Task

After you have successfully created your analysis script and integrated it into a workflow task,
you are now ready to create an HTML form.

For each input of your task, you will need at least one corresponding form input (for dates,
you may need up to three inputs per date, depending on your implementation).

For example, if a task had inputs of latitude and longitude, the form would need two
corresponding text boxes in that form.

There is a template HTML file for creating this form, with an example of using text boxes,
radio buttons, and drop down menus, located in templates/template.html. Because these
pages get loaded directly into an already live page, you do not need to include standard
doctype, head, or body tags. You can follow the template to make your HTML file fairly easily.

Once you have your HTML form, you can add it to the tangelo_html/ncarworkflow/stepHTML
folder. In order to make the task available in the app, you will then need to modify 2 more
files: analysismenu.js and analysis.html.

In tangelo _html/ncarworkflow/stepHTML/analysis.html, you will need to add your task to the
sidebar-nav unordered list. It can be of the format:

Analysis
where Analysis is the name of your new task.

17

After that, open tangelo_html/ncarworkflow/javascript/analysismenu.js. You will then add a
function that looks like this:

function newAnalysis() {
"use strict";
$("#analysisHTMLLoadSection") .empty();
$("#analysisHTMLLoadSection").load("stepHTML/analysis.html");
}

Where analysis in “newAnalysis” and “stepHTML/analysis.html ” is the name of your task.

Create Javascript Interface for the Task

After you have added the HTML and updated the corresponding HTML and Javascript files,
you can implement the necessary parsing to have your task add to a workflow. You can find a
template files located in templates/template.js, which gives an example of all required
functions. This will include callAnalysis(), anlaysis(), updateAnalysis(), and (most likely)
generateNodeSelect() (where, once again, Analysis is replaced with the name of your new
task). After implementing these functions, you will have successfully created a new task for
use in the workflow.

Changes to Workflow Library

All current changes to the library are marked with the comment “# Robert Crimi” above the
change. This includes class methods and fields.

To make a change to the workflow library:
1) Make any necessary changes to library
2) Sign into terminal as root
3) Navigate into the pyutilib.workflow-3.5.1 folder
4) Run “python setup.py install”

Workflow Visualization

Workflows are visualized using the “vis” Tangelo plugin, but the x and y coordinates of nodes
are computed using Javascript found in the
tangelo_html/ncarworkflow/javascript/workflowvis.js file. If you notice a bug in the calculation
of X'and Y values, you will want to check the assignXValue and assignYValue functions
respectively. You can read more about that in the code documentation, provided in
Documentation/index.html.

18

Research

Tangelo and Arbor

Summary

Arbor is specifically designed to be used with biological data, specifically phylogenetics. Their
interface is very simple and really does not provide the workflow system we were originally
looking for.

Easy Mode:

A1l Easy Mode - Ancestral State Reconstruction

Show help I Browse or drop files here

Tree: (none) @

Table: (none) @

Load data above to proceed

Their demo allows you to upload a .phy and .tsv file, and then it spits out some information.
The information can be changed by clicking on some names, but there isn’t really a workflow
like Alteryx, for example.

Expert Mode:
ANDURN

revolutionary workflows
Use the panel below to visualize, analyze, or manage your data.

v
Log In or Register
Data Management Analysis Visualization
Arbor
i Browse or drop files
Biosphere2
CurtBobScratch
Jeff Test Collection
OTLintegration
OpenTree

19

The “Expert Mode” demo is super confusing, | never figured out how to use the data. But from
what | could tell it also relies mostly on text-based links and dropdowns, not on an
“‘Alteryx”-type workflow.

The Workflow GUI

The Workflow GUI they were designing for their system is still in its infancy. GitHUB shows
that the WorkflowGUI repository has really only had its initial commit. Not only that, but
everything in the repository is still hardcoded. We would more or less be rewriting the entire
code to use it with our system. There is also no documentation for the GUI.

Arbor Status

Most of the Arbor repositories were last updated in May 2014. The most recent update was
about a month ago. Because of the “newness” of the project, | don’t think it would be wise to
use it as part of our system.

pyutilib.workflow
https://pypi.python.org/pypi/pyutilib.workflow/3.5.1

Summary

After reviewing a variety of scientific workflow tools, pyutilib.workflow shows the most
promise. Pyutilib.workflow is a Python package that allows for workflow definitions. These
workflows are composed of tasks, which have inputs and outputs. This package also allows
for workflows to be composed of other workflows.

With this package, we will be able to define a structure for scientific workflows. This structure
will allow for reproducibility as we will only need to save these objects in a database. This
package will also allow for workflows to be modified for inclusion in other workflows. Finally,
we can modify the defined tasks to include a visualization for the site. For example, we can
create symbols for specific tasks, inputs, and outputs.

Workflows and Tasks can be represented as strings. From these strings, we can parse
information for use in the site. For example, we can parse a workflow string to determine the
order in which tasks are computed. Tasks also have an EmptyTask subclass to represent a
task which has not been initialized. We can use this as a representation of a new task when
added to a workflow.

20

https://pypi.python.org/pypi/pyutilib.workflow/3.5.1

Nested Workflows

The workflow engine allows for workflows to be nested within pre-existing workflows. This will
allow users to have their workflows be pieces of larger scale projects.

. To show a simple example of a nested
() workflow:
yutilib.workflow.Workflow()
s pyutilib.workflow.Workflow()
A.inputs.a - 1 Here, we create an instance of two tasks. Each
A : - task is then delegated to a unique workflow.
On line 82, there is a link set between the
SETLiTLieet output of workflow “w” and the input of
. q()) workflow “gq.” The values of inputs and outputs
for the workflows are the same values of the
first and last task inputs and outputs respectively. This script will first run workflow “w” and
then send its answer to workflow “q.”

MongoDB

Summary

- When user access our app, a session id is being generated, it becomes the key of one
document in our MongoDB

- Collection -> Table, Document -> row

- Our Database consists of a collection of documents, a document is a list of JSON,
each JSON has the data that needs to store for one step

- Permanent storage: If the workflow is complete, clean out the NetCDF path and plots,
save the steps only and then generate a script that can runs the whole workflow,
otherwise delete the whole thing

- NetCDF: Maybe only store a path to the NetCDF file

- Pymongo (version 3.0.1)

Saving a Copy of a Workflow

The current Workflow plugin presented here can save and load workflows to and from a
database, but it cannot save copies of workflows. Below is a brief overview of the steps
involved to implement this functionality:

First, you will need to modify the loadWorkflow.html page found in tangelo_html/ncarworkflow.
| recommend adding a checkbox that says “Load a Copy.” If this checkbox is selected, then
the workflow would be loaded with a new unique ID.

In order for this to be feasible, the load\Workflow function in
tangelo_html/plugin/workflow/python/__init__.py would not need to be changed. Instead, the

loadWorkflow elif in the run function of tangelo_html/python/updateWorkflow.py would be

21

updated with an additional check. After the workflow is loaded, if the user wants to load a
copy, then the workflowID of the workflow would be set to a new workflowID. Then the
workflow can be run and edited as normal, and when the user hits save, they will have a new,

unique workflow they can use.

22

Contact Information

Brian Bonnlander, NCAR: bonnland@ucar.edu

Seongmin Choi, Deployment Lead: Seongmin.Choi@colorado.edu
Robert Crimi, Architecture/Research Lead: Robert.Crimi@colorado.edu
Connor Guerrieri, Source Control Lead: Connor.Guerrieri@colorado.edu

Bo Han, Test Lead: boha4482@colorado.edu
Hannah Keller, Team Lead: Hannah.Keller@colorado.edu
Hannah Thomas, Documentation Lead: imaginationandtech@amail.com

23

mailto:bonnland@ucar.edu
mailto:Seongmin.Choi@colorado.edu
mailto:Robert.Crimi@colorado.edu
mailto:Connor.Guerrieri@colorado.edu
mailto:boha4482@colorado.edu
mailto:Hannah.Keller@colorado.edu
mailto:imaginationandtech@gmail.com

