
Abstract!
! To learn more about the different scheduling policies, I devised three test programs. One program was
CPU intensive. The second program was I/O intensive. The third program was a mixture of the two other
programs. I then ran each program with a different scheduler and number of processes. I measured the
elapsed time, cpu usage, and number of context switches for all tests. The data I yielded suggests that the
SCHED_FIFO Policy is the most efficient use of CPU but not the best choice when running simultaneous
processes. The SCHED_OTHER and SCHED_RR policies are both ideal for running simultaneous processes,
but the SCHED_OTHER policy is the quickest and scales the best.!!
Introduction!
! There are many scheduling policies available to an Operating System, each with its own pros and cons
and specialties. The purpose of these tests is to compare three rather common scheduling algorithms used by
the Linux Operating System. In order to do this I wrote three test programs that each tested a different facet of
the scheduling algorithms. I ran each combination of test (twenty-seven in total) ten times (two hundred
seventy tests). I compared the data from each test program to determine what sorts of processes are better
suited to each scheduling algorithm and how each scheduling algorithm scaled.!!
Method!
! To gather my data I wrote three test
programs and a script to run them. !
! The first test program is a modified version of
the pi.c file given as an example program. It
calculates Pi through 100,000,000 iterations. It takes
two command line arguments: the scheduling policy
and the number of processes to run. The file then
sets the scheduling policy and forks itself based on
the number of processes it needs to run. !
! The second test program is a modified
version of the rw.c file given as an example
program. It reads a specified number of bytes from a
file and then writes these bytes to another file. It
takes up to 6 arguments, where the first 2 are
mandatory. The first argument is the scheduling
policy. The second is the number of processes to
run. The third argument is the number of bytes to
transfer. The fourth argument is how many bytes
can be transferred at a time. The fifth argument is
the input file name. The sixth argument is the output
file name. It reads and writes 1,024,000 Bytes in
1,024-Byte size chunks. !
! The third test program is a mixture of the pi.c
and rw.c programs. The program is stored in
mixed.c It takes the same arguments as rw.c. It
alternatively calculates Pi through 100,000,000
iterations and reads and writes 1,024,000 Bytes in
1,024-Byte size chunks. It does this 10 times.!
! The script runs all 27 test combinations
consecutively once. It records each test combination
into one of three files: cpu_results for the CPU-
bound results, io_results fro the I/O-bound results,

and mixed_results for the mixed program results.
The results are taken from the linux time command.!
! I tested scalability by running the programs
using five processes, twenty processes, and two
hundred processes. Each scheduling policy and
program type is tested with each level of scalability.!
! I ran these tests ten times to minimize faulty
data. In total I ran 270 tests.!
! I ran these tests on the Computer Science
Virtual Machine, which I run in VMWare Fusion on
my MacBook Pro. During the tests I closed all other
applications on my Mac and also turned off both the
Wi-Fi and Bluetooth. Since all of my files are located
inside Dropbox, this stopped Dropbox from trying to
sync the many generated output files. In the Virtual
Machine I had only the terminal and Sublime Text
open.!!
Results!

SCHED_OTHER Elapsed Real Time

Se
co

nd
s

Pe
r P

ro
ce

ss

0
3
6
9

12
15
18
21
24
27
30

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

! Each scheduling policy resulted in overall
similar trends, but slight variations exist within the
data. After calculating the average case for each of
the twenty seven tests, I then calculated the per-
process results for each test.!
Elapsed Real Time!
5 PROCESSES!
! Overall, the SCHED_RR Policy is the fastest
scheduler for five simultaneous processes, with a
total running time of 23.51 seconds per process.!
! The slowest policy is the SCHED_FIFO
Policy, with a total running time of 26 seconds per
process.!
! For CPU Bound programs, the SCHED_RR
policy is quickest, with an average time of 2.13
seconds per process. The slowest policy is the
SCHED_FIFO policy, with an average time of 2.3
seconds per process.!

! For I/O Bound programs, the SCHED_FIFO
Policy is quickest, with an average time of 0.169
seconds per process. The slowest policy is the
SCHED_RR policy, with an average time of 0.25
seconds per process.!
! For Mixed programs, the SCHED_RR Policy
is quickest, with an average time of 21.13 seconds
pe r p rocess . The s lowes t po l i cy i s t he
SCHED_OTHER policy, with an average time of
22.43 seconds per process.!
20 PROCESSES!
! Overall, the SCHED_RR Policy is quickest
when running twenty processes, with a total time of
22.92 seconds per process.!
! The slowest policy is the SCHED_FIFO
Policy, with a total running time of 23.51 seconds.!
! For CPU Bound programs, the quickest
policy is the SCHED_OTHER Policy, with an
average time of 1.96 seconds per process. The
slowest policy is the SCHED_RR Policy, with a time
of 2.13 seconds per process.!
! For I/O Bound programs, the quickest policy
is the SCHED_FIFO Policy, with an average time of
0.16 seconds per process. The slowest policy is the
SCHED_RR Policy with 0.25 seconds per process.!
! For Mixed programs, the SCHED_RR Policy
is quickest, with an average time of 20.76 seconds
per process. The slowest policy is the SCHED_FIFO
policy, with an average time 21.34 seconds per
process. !
200 PROCESSES!
! Overall, the SCHED_OTHER Policy is
quickest when running two hundred processes, with
a total time of 22.99 seconds per process.!
! The slowest policy is the SCHED_FIFO
Policy, with a total running time of 24.01 seconds.!
! For CPU Bound programs, the quickest
policy is the SCHED_OTHER Policy, with an
average time of 1.92 seconds per process. The
slowest policy is the SCHED_RR Policy with an
average time of 2.02 seconds per process.!
! F o r I / O B o u n d p r o g r a m s , t h e
SCHED_OTHER Policy is the quickest policy, with
an average time of 0.21 seconds per process. The
slowest policy is the SCHED_RR policy, with an
average time of 0.54 seconds per process.!
! For Mixed programs, the SCHED_OTHER
Policy is the quickest policy, with an average time of
20.86 seconds per process. The SCHED_FIFO
policy is the slowest, with an average time of 21.48
seconds per process.!
CPU Usage!

SCHED_RR Elapsed Real Time

Se
co

nd
s

Pe
r P

ro
ce

ss

0
3
6
9

12
15
18
21
24
27
30

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

SCHED_FIFO Elapsed Real Time
Se

co
nd

s
Pe

r P
ro

ce
ss

0
3
6
9

12
15
18
21
24
27
30

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

!
5 PROCESSES!

! Overall, the SCHED_FIFO Policy consumed
the least amount of CPU while running five
processes, with a total amount of 73.04% of the
CPU per process. The SCHED_RR policy used the
most CPU for five simultaneous processes, with a
total of 80.5% of the CPU per process.!
! F o r C P U B o u n d p r o g r a m s , t h e
SCHED_FIFO Policy consumed the least amount of
CPU, using an average of 32.06% of the CPU per
process. The SCHED_RR Policy consumed the
most CPU, using an average of 34.88% per
process.!
! For I/O Bound programs, the SCHED_FIFO
Policy consumed the least amount of CPU, using an
average of 8.86% of the CPU per process. The
SCHED_RR Policy consumed the most CPU, using
an average of 9.74% of the CPU per process.!
! For Mixed programs, the SCHED_FIFO
Policy consumed the least amount of CPU, using an
average of 32.12% of the CPU per process. The
SCHED_RR Po l i cy used the mos t CPU,
approximately 35.88% of the CPU per process.!
20 PROCESSES!
! Overall, the SCHED_FIFO Policy consumed
the least amount of CPU while running twenty
processes, with a total of 22.11% of the CPU per
process. The SCHED_RR Policy consumed the
most CPU, with a total of 22.57% of the CPU per
process.!
! F o r C P U B o u n d p r o g r a m s , t h e
SCHED_FIFO Policy consumed the least amount of
CPU, with an average of 9.24% of the CPU per
process. The SCHED_OTHER Policy consumed the
most CPU, with an average of 9.91% of the CPU per
process.!
! F o r I / O B o u n d p r o g r a m s , t h e
SCHED_OTHER Policy used the least amount of
CPU, approximately 3.055% of the CPU per
process. The SCHED_RR Policy consumed the
most CPU, using an average of 3.89% of the CPU
per process.!
! For Mixed programs, the SCHED_FIFO
Policy consumed the least amount of CPU,
approximately 9.12% of the CPU per process. The
SCHED_RR Policy consumed the most CPU, using
an average of 9.37% of the CPU per process.!
200 PROCESSES!
! Overall, the SCHED_FIFO Policy consumed
the least CPU while running 200 processes, with a
total amount of 2.124% of CPU per process. The
SCHED_RR Policy consumed the most CPU, using
10.61% of the CPU per process.!

SCHED_FIFO CPU Usage

Pe
rc

en
t P

er
 P

ro
ce

ss

0%
8%

16%
24%
32%
40%
48%
56%
64%
72%
80%

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

SCHED_RR CPU Usage

Pe
rc

en
t P

er
 P

ro
ce

ss

0%
9%

18%
27%
36%
45%
54%
63%
72%
81%
90%

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

SCHED_OTHER CPU Usage
Pe

rc
en

t P
er

 P
ro

ce
ss

0%
8%

16%
24%
32%
40%
48%
56%
64%
72%
80%

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

! F o r C P U B o u n d p r o g r a m s , t h e
SCHED_FIFO Policy consumed the least amount of
CPU. It used 0.94% of the CPU per process. The
SCHED_OTHER Policy used the most CPU, using
0.992% of the CPU per process.!
! For I/O Bound programs, the SCHED_RR
Policy used the least CPU, approximately 0.19% of
the CPU per process. The SCHED_FIFO policy
used the most CPU, approximately 0.24% of the
CPU per process.!
! For Mixed programs, the SCHED_FIFO
Policy used the least CPU, approximately 0.943% of
the CPU per process. The SCHED_RR Policy used
the most CPU per process, approximately 9.47% of
the CPU per process.!
Involuntary Context Switches!

5 PROCESSES!
! Overall, the SCHED_FIFO Policy has the
least involuntary context switches while running five
simultaneous processes, with a total of 96 switches
per process. The SCHED_OTHER Policy has the
most Involuntary Context Switches, with a total of
10,093 switches per process.!
! F o r C P U B o u n d p r o g r a m s , t h e
SCHED_FIFO Policy has the least involuntary
context switches, about 3 switches per process. The
SCHED_OTHER Policy has the most, with 775
context switches per process.!
! For I/O Bound programs, the SCHED_RR
Policy has the least involuntary context switches,
about 0 per process. The SCHED_OTHER Policy
has the most, about 696 switches per process.!
! For Mixed programs, the SCHED_FIFO
Policy has the least switches, about 33 per process.
The SCHED_OTHER Policy has the most switches,
about 8,622 per process.!
20 PROCESSES!
! Overall, the SCHED_FIFO Policy has the
least number of involuntary context switches while
running twenty simultaneous processes, a total of
a b o u t 4 3 s w i t c h e s p e r p r o c e s s . T h e
SCHED_OTHER Policy has the most involuntary
context switches, a total of about 10,155 switches
per process.!
! F o r C P U B o u n d p r o g r a m s , t h e
SCHED_FIFO scheduling process has the least
amount of context switches, about 4 switches per
process. The SCHED_OTHER process has the
most context switches, about 887 switches per
process.!
! For I/O Bound programs, the SCHED_FIFO
and SCHED_RR Policies both have the least

SCHED_FIFO Involuntary Context
Switches

Sw
itc

he
s

Pe
r P

ro
ce

ss

0
16
32
48
64
80
96

112
128
144
160

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

SCHED_RR Involuntary Context Switches

Sw
itc

he
s

Pe
r P

ro
ce

ss

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

SCHED_OTHER Involuntary Context
Switches

Sw
itc

he
s

Pe
r P

ro
ce

ss

0
1200
2400
3600
4800
6000
7200
8400
9600

10800
12000

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

amount of context switches, about 0 per process.
However, SCHED_FIFO has the smaller number
of 0.21 switches per process, as opposed to
SCHED_RR’s 0.35 switches per process. The
SCHED_OTHER Policy has the most context
switches, about 727 switches per process.!
! For Mixed programs, the SCHED_FIFO
Policy has the least amount of involuntary context
switches, about 39 switches per process. The policy
with the most involuntary context switches is the
SCHED_OTHER policy, with about 8,541 context
switches per process.!
200 PROCESSES!
! Overall, the SCHED_FIFO Policy has the
least number of involuntary context switches while
running 200 simultaneous processes, totaling about
155 switches per process. The SCHED_OTHER
Policy has the most involuntary context switches,
totaling about 9,816 switches per process.!
! F o r C P U B o u n d p r o g r a m s , t h e
SCHED_FIFO Policy has the least switches, with
about 4 switches per process. The SCHED_OTHER
Policy has the most switches, about 629 switches
per process.!
! For I/O Bound programs, the SCHED_RR
Policy used the least switches, with about 0
switches per process. The SCHED_OTHER Policy
has the most switches, about 609 switches per
process.!
! For Mixed programs, the SCHED_FIFO
Policy has the least involuntary switches, about 82
per process. The SCHED_OTHER Policy has the
most involuntary switches, about 8,578 per process.!
Voluntary Context Switches! 5 PROCESSES!

! Overall, the SCHED_FIFO Policy has the
least number of voluntary context switches, totaling
about 4,241 switches per process. The SCHED_RR
Policy has the most voluntary context switches,
totaling about 4,694 context switches.!
! F o r C P U B o u n d p r o g r a m s , t h e
SCHED_OTHER Policy has the least number of
voluntary context switches, about 2 switches per
process. The SCHED_FIFO Policy has the most
voluntary context switches, about 4 per process.!
! For I/O Bound programs, the SCHED_FIFO
Policy has the least number of voluntary context
switches, about 2,085 switches per process. The
SCHED_OTHER Policy has the most voluntary
context switches, about 2,279 switches per process.!
! For Mixed programs, the SCHED_FIFO
Policy has the least voluntary context switches,
about 2,152 switches per process. The SCHED_RR

SCHED_OTHER Voluntary Context
Switches

Sw
itc

he
s

Pe
r P

ro
ce

ss

0
700

1400
2100
2800
3500
4200
4900
5600
6300
7000

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

SCHED_FIFO Voluntary Context Switches

Sw
itc

he
s

Pe
r P

ro
ce

ss

0
600

1200
1800
2400
3000
3600
4200
4800
5400
6000

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

SCHED_RR Voluntary Context Switches

Sw
itc

he
s

Pe
r P

ro
ce

ss

0
3000
6000
9000

12000
15000
18000
21000
24000
27000
30000

Number of Processes
5 20 200

CPU Bound
I/O Bound
Mixed

Policy has the most voluntary context switches,
about 2,451 per process.!
20 PROCESSES!
! Overall, the SCHED_OTHER Policy has the
least number of voluntary context switches while
running twenty processes. The switches total about
4,274 switches per process. The SCHED_RR Policy
has the most voluntary context switches, totaling
about 4,794 context switches per process.!
! For CPU Bound programs, all three policies
have an average context switch of about 1 per
process. The SCHED_FIFO Policy has the smallest
number with 1.25 switches per process, followed by
the SCHED_OTHER Policy with 1.34 switches per
process, and finished with the SCHED_RR Policy
with 1.36 switches per process.!
! F o r I / O B o u n d p r o g r a m s , t h e
SCHED_OTHER Policy has the least voluntary
switches, about 1,890 switches per process. The
SCHED_RR Policy has the most voluntary switches,
about 2,353 switches per process.!
! For Mixed programs, the SCHED_FIFO
Policy has the least voluntary switches, about 2,172
switches per process. The SCHED_RR Policy has
the most switches, about 2,440 switches per
process.!
200 PROCESSES!
! Overall, the SCHED_FIFO Policy has the
least number of voluntary context switches while
running 200 simultaneous processes. It switches a
total of 5,222 times per process.!
! For CPU Bound programs, all three policies
have an average context switch of about 1 per
process. The SCHED_FIFO Policy has the smallest
number with 1.03 switches per process, followed by
the SCHED_RR Policy with 1.04 switches per
process, and finished with the SCHED_OTHER
Policy with 1.08 switches per process.!
! For I/O Bound programs, the SCHED_RR
Policy and SCHED_FIFO Policy have the least
number of voluntary context switches, about 2,820
per process. The SCHED_OTHER Policy has the
most voluntary context switches, about 3,817
switches per process.!
! For Mixed programs, the SCHED_FIFO
Policy has the least number of voluntary context
switches, about 2,401 switches per process. The
SCHED_RR Policy has the most voluntary context
switches, about 22,324 switches per process.!!
Analysis!

CPU Bound Processes!

! For CPU Bound processes, no policy is
drastically faster than another. Each policy gave a
total of about 6 seconds per process. However, of
the three scheduling policies, the SCHED_OTHER
Policy undergoes many more context switches per
process, a total of about 2,295. Thus, even with a
significant overhead, the SCHED_OTHER Policy is
quite fast.!

! Comparat ively, the SCHED_RR and
SCHED_FIFO Policies took about the same amount

Elapsed Time for CPU Bound Programs

Se
co

nd
s

Pe
r P

ro
ce

ss
0

1.75

3.5

5.25

7

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes 20 Processes 200 Processes

Involuntary Switches for CPU Bound
Programs

Sw
itc

he
s

Pe
r P

ro
ce

ss

0

750

1500

2250

3000

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes
20 Processes
200 Processes

of time with far less context switches: about 18 per
process for SCHED_FIFO and 75 per process for
SCHED_RR. Based on time and overhead, then,
CPU Bound processes can be well handled by any
of the three policies.!
! T h e C P U i s b e s t u t i l i z e d b y t h e
SCHED_FIFO Policy, which has little context
switching and so wastes less CPU in context switch
overhead. The SCHED_FIFO Policy has about 0.42
context switches for every percentage of CPU, or 1
switch for every 2% use of the CPU.!
! The SCHED_RR Policy has about 1.65
context switches for every percentage of CPU, or
about 3 switches for every 2% of the CPU. The
SCHED_OTHER Policy has about 50.35 switches
for every percentage of CPU.!

! Therefore, while the SCHED_FIFO Policy
used less CPU overall, the SCHED_OTHER Policy
most efficiently uses the CPU to where context
switch overhead is negligible.!
I/O Bound Processes!

! F o r I / O B o u n d P r o c e s s e s , t h e
SCHED_OTHER Policy is drastically faster than the
SCHED_FIFO and SCHED_RR Policies. The
SCHED_OTHER Policy is faster because for the I/O
p rocesses i t sca led be t te r ove ra l l . The
SCHED_OTHER Policy can run 200 simultaneous I/
O processes much quicker and more efficiently than
SCHED_FIFO and SCHED_RR.!
! However, for 20 or less processes,
SCHED_FIFO is quicker.!
! The SCHED_OTHER Policy still has the
most context switches, about 10,017 per process.
This means that it has 770.61 switches for every 1%
of CPU used.!
! The SCHED_FIFO Policy has about 7,373
switches per process, which is 574.16 switches for
every 1% of CPU used.!
! The SCHED_RR Policy has about 7,414
switches per process, which is 536.51 switches for
every 1% of the CPU used.!
! Therefore, the SCHED_OTHER Policy most
efficiently uses the CPU to where context switch
overhead is negligible and the I/O work can finish

CPU Usage for CPU Bound Programs

%
C

PU
 P

er
 P

ro
ce

ss

0%

12.5%

25%

37.5%

50%

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes 20 Processes 200 Processes

Voluntary Switches for CPU Bound
Programs

Sw
itc

he
s

Pe
r P

ro
ce

ss

0

1.75

3.5

5.25

7

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes
20 Processes
200 Processes

Elapsed Time for I/O Bound Programs

Se
co

nd
s

Pe
r P

ro
ce

ss

0

0.25

0.5

0.75

1

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes 20 Processes 200 Processes

quickly.!
Mixed Processes!

! For the mixed processes each scheduling
algorithm results in rather similar elapsed times.
The SCHED_FIFO algorithm is the slowest, and
the SCHED_RR algorithm is the quickest.!

! The SCHED_OTHER Policy has about
33,251 switches per process, which is 741.94
switches for every 1% of CPU used.!
! The SCHED_FIFO Policy has about 6,878
switches per process, which is 163.05 switches for
every 1% of CPU used.!
! The SCHED_RR Policy has about 32,050
switches per process, which is 585.7 switches for
every 1% of CPU used.!

CPU Usage for I/O Bound Programs

%
C

PU
 P

er
 P

ro
ce

ss

0%

3.5%

7%

10.5%

14%

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes 20 Processes 200 Processes

Voluntary Switches for I/O Bound Programs

Sw
itc

he
s

Pe
r P

ro
ce

ss

0

2000

4000

6000

8000

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes 20 Processes 200 Processes

Involuntary Switches for I/O Bound
Programs

Sw
itc

he
s

Pe
r P

ro
ce

ss

0

750

1500

2250

3000

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes
20 Processes
200 Processes

Elapsed Time for Mixed Programs

Se
co

nd
s

Pe
r P

ro
ce

ss

0

17.5

35

52.5

70

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes 20 Processes 200 Processes

Involuntary Switches for Mixed Programs

Sw
itc

he
s

Pe
r P

ro
ce

ss

0

7500

15000

22500

30000

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes 20 Processes 200 Processes

! The SCHED_FIFO Policy used the least
CPU, while the SCHED_RR Policy used the most.
As the number of processes increased, the
SCHED_OTHER and SCHED_FIFO Policies
decreased the amount of CPU per process. The
SCHED_RR Policy improved CPU usage from 5
processes to 20 processes, but did not improve from
20 processes to 200 processes.!
! Therefore, the SCHED_OTHER Policy most
efficiently uses the CPU to where context switch
overhead is negligible and the process can finish
quickly.!

!
Conclusion!
! Each policy has its own pros and cons. I will
outline some of each for each policy.!
SCHED_FIFO!

! In terms of run time, the SCHED_FIFO
Policy does not scale very well. For CPU bound
processes, the amount of time per process
decreases as more processes are added, but
imperceptibly so. For I/O processes, the amount of
time per process increases, quite dramatically.
Mixed processes scale the same way as CPU
processes.!
! The SCHED_FIFO Policy uses less CPU
and has less context switches than the other
p o l i c i e s . I t a l s o h a s a h i g h p r i o r i t y
("sched_setscheduler(2) - linux," 2013). This makes
it ideal for processes involving interaction with the
user, as these processes will be moved to the top of
the run queue and will have very quick response
time. A good example is a word processor, such as
Microsoft Word or Apple Pages.!
! However, because a SCHED_FIFO task
cannot be interrupted ("sched_setscheduler(2) -
linux," 2013), if the task is CPU intensive at all it
quickly takes over all other resources and does not
allow other processes to run. This is very
detrimental to efficiently utilizing the CPU, as only
one process at a time can be completed.!
SCHED_OTHER!
! In terms of run time, the SCHED_OTHER
Policy actually scales fairly well. The more

processes there are, the less time per process is
needed. For CPU bound processes, the amount of
time per process stays about the same as the
number of processes increases. For I/O bound
processes, the amount of time per process
increases, but imperceptibly so. For Mixed
processes, the amount of time per process stays
about the same decreasing slightly.!
! The SCHED_OTHER Policy is very fast and
uses a moderate amount of CPU. It has the most
context switches, and therefore the most context
switch overhead. This is because of the low priority
o f t h e S C H E D _ O T H E R P o l i c y
("sched_setscheduler(2) - linux," 2013). This is
ideal for processes that run in the background, for
example, an app like Dropbox. The background
process will be scheduled in such a way that it will
be completed rather quickly and it will not take
away valuable time from other more important

processes.!
! However, the sheer number of context
switches creates a very large overhead, during
which the CPU does nothing productive and simply
wastes time.!
SCHED_RR!

CPU Usage for Mixed Programs

%
C

PU
 P

er
 P

ro
ce

ss

0%

15%

30%

45%

60%

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes 20 Processes 200 Processes

Voluntary Switches for Mixed Programs
Sw

itc
he

s
Pe

r P
ro

ce
ss

0

7500

15000

22500

30000

Scheduling Policy
SCHED_OTHER SCHED_FIFO SCHED_RR

5 Processes 20 Processes 200 Processes

! In terms of run time, the SCHED_RR Policy
does not scale very well. It actually becomes faster
going from a single digit number of processes to
tens of processes, but then becomes worse for
running hundreds of processes. For CPU bound
processes, the amount of time per process stays
about the same as the number of processes
increases. For I/O bound processes, the amount of
time per process decreases in the tens of processes
but then substantially increases in the hundreds of
processes. For Mixed processes, the amount of time
per process stays about the same.!
! The SCHED_RR Policy is not the fastest nor
the most CPU efficient. However, its high priority
("sched_setscheduler(2) - linux," 2013) and use of

round robin time slices means that it can run
multiple processes at once and push them through
faster than SCHED_FIFO. This makes it ideal for
processes that require a fast reaction time but not
necessarily are I/O bound, for example a web
browser.!
! However, as the SCHED_RR still has many
less context switches than the SCHED_OTHER
Policy, meaning that it will be slightly slower.!
! !
! !
! !
! !!

!
References!
sched_setscheduler(2) - linux manual page. (2013, 09 17). Retrieved from http://man7.org/linux/man-pages/
man2/sched_setscheduler.2.html!

A p p e n d i x A
SCHEDULIN

G
Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

5

9.76 19.23 0.1 198% 2992 7

12.24 19.73 0.18 162% 3729 8

11.66 18.8 0.48 165% 4595 8

11.67 19.05 0.25 165% 4414 8

11.93 18.97 0.3 161% 4555 8

11.7 19.01 0.48 166% 4603 7

11.57 18.9 0.38 166% 4288 11

12.51 19.17 0.26 155% 4644 8

9.69 19.15 0.12 198% 2434 9

9.7 19.09 0.14 198% 2513 8

Average 11.243 19.11 0.269 173.4% 3876.7 8.2

Per
Process

2.2486 3.822 0.0538 34.68% 775.34 1.64

40.15 78.96 0.25 197% 20676 28

SCHEDULIN
G

CPU
Bound

20

38.98 77.32 0.22 198% 14351 24

39.06 77.41 0.26 198% 19698 31

39.32 77.56 0.18 197% 19540 28

39.01 77.34 0.22 198% 20042 23

39.05 77.29 0.36 198% 19834 31

39.39 78 0.08 198% 19656 27

38.91 77.33 0.16 199% 17474 24

38.88 76.93 0.58 199% 11810 26

39.28 77.81 0.5 199% 14311 26

Average 39.203 77.595 0.281 198.1% 17739.2 26.8

Per
Process

1.96015 3.87975 0.01405 9.905% 886.96 1.34

200

447.07 854.91 10 193% 229840 244

372.81 736.32 5.69 199% 103417 215

374.33 740.49 4.48 199% 127666 205

386.62 764.84 4.66 199% 126510 210

374.99 742.19 4.28 199% 128700 216

373.82 740.38 3.78 199% 131004 218

382.19 759.6 2.27 199% 108723 207

382.14 759.74 1.96 199% 118173 213

373.02 737.14 6.7 199% 90180 220

373.55 735.86 8.94 199% 92829 217

Average 384.054 757.147 5.276 198.4% 125704.2 216.5

Per
Process

1.92027 3.785735 0.02638 0.992% 628.521 1.0825

1.8 0 0.96 53% 2962 12360

1.21 0 0.36 29% 3551 11970

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

SCHED_OT
HER

I/O
Bound

5

0.7 0 0.33 47% 2317 10436

0.8 0 0.34 42% 4675 11128

0.7 0 0.34 48% 2243 10249

0.7 0 0.31 44% 5074 10482

0.74 0 0.37 50% 4179 10775

0.69 0 0.34 50% 3697 10926

0.63 0 0.39 61% 3347 13683

0.61 0 0.38 62% 2767 11916

Average 0.858 0 0.412 48.6% 3481.2 11392.5

Per
Process

0.1716 0 0.0824 9.72% 696.24 2278.5

20

21.32 0.01 15.25 71% 15734 49068

2.19 0 1.36 62% 12429 33618

2.62 0 1.27 48% 14684 35680

3.33 0 1.28 38% 12313 37121

2.05 0 1.28 62% 16920 31696

3.12 0 1.32 42% 15481 37215

2.35 0 1.38 58% 17976 33616

2.53 0 1.28 50% 14219 35863

1.57 0 1.44 91% 13149 41871

1.67 0 1.49 89% 12549 42268

Average 4.275 0.001 2.735 61.1% 14545.4 37801.6

Per
Process

0.21375 0.00005 0.13675 3.055% 727.27 1890.08

96.31 0.29 75.95 79% 157606 786537

41.23 0.04 14.13 34% 133012 652890

45.03 0.11 13.62 30% 125630 661257

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

200

32.52 0.18 13.77 42% 107961 642008

41.97 0.12 13.32 32% 127583 628413

35.86 0.01 12.94 36% 138694 657298

29.66 0.09 13.66 46% 124202 654124

40.74 0.06 12.82 31% 131332 674011

23.38 0.12 17.58 75% 91123 1162113

37.01 0.09 16.64 45% 81284 1114696

Average 42.371 0.111 20.443 45% 121842.7 763334.7

Per
Process

0.211855 0.000555 0.102215 0.225% 609.2135 3816.6735

5

111.51 188.18 3.61 171% 44473 11118

110.05 183.13 6.21 172% 49639 11159

110.51 183.46 6.23 171% 44827 11619

110.4 185.12 5.99 173% 44205 10297

105.99 183.46 5.76 178% 43464 10502

102.26 184.4 3.76 184% 36567 10196

111.35 190.59 5.11 175% 48352 10221

170.3 186.56 6.3 113% 70050 10243

94.45 185.57 1.43 197% 24625 11739

94.79 185.68 2 197% 24880 14711

Average 112.161 185.615 4.64 173.1% 43108.2 11180.5

Per
Process

22.4322 37.123 0.928 34.62% 8621.64 2236.1

412.79 788.07 8.57 192% 226010 47062

391.81 733.4 18.53 191% 166367 46251

398.18 754.86 14.41 193% 176940 45172

405.42 771.65 12.91 193% 192609 46637

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

Mixed

20
399.6 758.55 13.37 193% 150399 43259

608.61 754.42 9.68 125% 193437 46461

413.62 778.2 16.4 192% 171765 47843

464.94 781.51 16.42 171% 170515 53414

379.43 749.39 6.43 199% 132964 48905

386.36 762.22 6.65 199% 127128 51588

Average 426.076 763.227 12.337 184.8% 170813.4 47659.2

Per
Process

21.3038 38.16135 0.61685 9.24% 8540.67 2382.96

200

4230.49 8099.93 75.13 193% 2337160 492544

4020.79 7791.36 68.3 195% 2027304 653830

4033.08 7788.75 90.8 195% 1754975 667513

4102.39 7914.39 90.68 195% 1828016 538309

4081.87 7830.94 106.86 194% 1823175 551034

5187.16 7861.74 71.36 152% 1794589 634293

4077.97 7879.83 102.98 195% 1553248 537185

4057.27 7856.53 56.25 195% 1663436 520619

3943.33 7757.8 100.58 199% 1188771 618876

3984.18 7831.11 108.07 199% 1185205 568902

Average 4171.853 7861.238 87.101 191.2% 1715587.9 578310.5

Per
Process

20.859265 39.30619 0.435505 0.956% 8577.9395 2891.5525

5

11.49 18.62 0 162% 16 10

11.49 18.44 0 160% 18 18

11.54 18.45 0 159% 15 23

11.44 18.39 0 160% 14 18

11.41 18.42 0 161% 14 20

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

CPU
Bound

5
11.58 18.43 0.01 159% 18 24

11.34 18.38 0.03 162% 17 50

11.43 18.50 0 161% 18 28

11.37 18.49 0.01 162% 18 10

11.88 18.75 0 157% 20 11

Average 11.497 18.487 0.005 160.3% 16.8 21.2

Per
Process

2.2994 3.6974 0.001 32.06% 3.36 4.24

20

42.12 76.53 0.56 183% 76 25

38.81 73.97 0 190% 76 25

39.58 74.03 0.01 187% 78 25

38.92 74.11 0 190% 76 25

39.72 74.08 0.02 186% 79 25

39.98 74.18 0.02 185% 76 25

42.06 74 0 175% 73 25

39.11 74.24 0 189% 80 25

39.85 74.26 0.01 186% 78 25

41.79 74.19 0.01 177% 73 25

Average 40.194 74.359 0.063 184.8% 76.5 25

Per
Process

2.0097 3.71795 0.00315 9.24% 3.825 1.25

200

445.84 843.37 0.12 189% 876 205

390.29 740.08 0.08 189% 776 205

395.69 746.93 0.06 188% 780 205

410.64 776.32 0.05 189% 811 206

394.37 745.81 0.13 189% 785 205

393.59 742.19 0.05 188% 773 205

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

SCHED_FIF
O

409.33 772.37 0.04 188% 805 205

407.52 768.42 0.13 188% 797 205

390.87 742.8 0.05 190% 782 205

393.49 747.71 0.05 190% 786 205

Average 403.163 762.6 0.076 188.8% 797.1 205.1

Per
Process

2.015815 3.813 0.00038 0.944% 3.9855 1.0255

I/O
Bound

5

2.12 0 0.6 28% 2962 12360

0.71 0 0.33 46% 5 10075

0.68 0 0.34 51% 4 11600

0.71 0 0.31 44% 3 10035

0.73 0 0.34 46% 12 10024

0.69 0 0.3 45% 2 9992

0.67 0 0.31 47% 3 10072

0.68 0 0.32 47% 2 10080

0.72 0 0.32 44% 6 9992

0.75 0 0.34 45% 3 10020

Average 0.846 0 0.351 44.3% 300.2 10425

Per
Process

0.1692 0 0.0702 8.86% 60.04 2085

20

13.41 0 15.22 113% 5 54124

1.86 0 1.32 70% 4 40065

3.77 0 1.3 34% 3 40167

1.66 0 1.48 89% 7 39964

1.74 0 1.24 71% 2 48756

1.74 0 1.44 83% 2 50809

1.82 0 1.35 73% 3 40235

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

1.96 0 1.38 70% 4 39907

2.02 0 1.46 72% 4 57305

1.88 0 1.4 74% 7 56362

Average 3.186 0 2.759 74.9% 4.1 46769.4

Per
Process

0.1593 0 0.13795 3.745% 0.205 2338.47

200

106.89 0.14 136.97 128% 8 582033

38.65 0.02 16.95 43% 4 520097

35.43 0.02 14.29 40% 4 543261

29.67 0.03 15.48 52% 3 412898

618.41 0.51 18.77 3% 2 638680

35.86 0.01 12.94 36% 138694 657298

20.88 0.01 15.48 74% 6 598443

63.73 0.40 10.86 17% 27 562560

37.81 0.02 16.42 43% 2 553761

40.46 0 15.66 38% 5 571637

Average 102.779 0.116 27.382 47.4% 13875.5 564066.8

Per
Process

0.513895 0.00058 0.13691 0.237% 69.3775 2820.334

5

121.24 193.82 0.37 160% 167 10130

116.27 186 0.42 160% 167 10283

117.25 187.68 0.48 160% 161 10032

117.69 188.92 0.5 160% 164 10791

116.42 186.14 0.54 160% 159 10162

116.21 186.02 0.36 160% 160 10418

120.47 193.96 0.5 161% 169 10250

120.39 194.36 0.45 161% 178 12042

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

Mixed

114.5 186.72 0.4 163% 154 10076

116.27 187.04 0.4 161% 157 13396

Average 117.671 189.066 0.442 160.6% 163.6 10758

Per
Process

23.5342 37.8132 0.0884 32.12% 32.72 2151.6

20

446.62 815.57 1.9 183% 816 41198

402.13 756.13 1.76 188% 780 40965

425.02 775.25 1.69 182% 775 40329

436.27 789.6 1.34 181% 775 40505

427.9 775.34 1.35 181% 766 42020

427.41 770.53 1.93 180% 737 52897

433.46 795.3 1.96 183% 799 46948

430.52 789.35 1.66 183% 803 41036

415.08 755.26 1.57 182% 753 48455

423.58 767.52 1.49 181% 759 40023

Average 426.799 778.985 1.665 182.4% 776.3 43437.6

Per
Process

21.33995 38.94925 0.08325 9.12% 38.815 2171.88

200

4470.14 8411.64 15.54 188% 87778 480246

4255.25 8033.84 18.52 189% 8411 406860

4276.332 8050.82 17.46 188% 8421 508938

4330.65 8178.1 18.44 189% 8552 481598

4281.59 8098.89 18.3 189% 8485 522321

4296.53 8086.74 17.76 188% 8467 508719

4323.46 8144.54 17 188% 8499 452188

4236.11 7995.14 34.92 189% 8327 533472

4251.67 8036.55 19.11 189% 8410 500090

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

4244.13 8024.3 21.17 189% 8404 406899

Average 4296.5862 8106.056 19.822 188.6% 16375.4 480133.1

Per
Process

21.482931 40.53028 0.09911 0.943% 81.877 2400.6655

CPU
Bound

5

10.31 19.16 0 185% 111 11

10.51 18.64 0 177% 115 11

11.09 18.44 0 166% 125 10

10.63 18.47 0 173% 115 10

11.14 18.44 0 165% 123 11

11.31 18.51 0.01 163% 122 11

10.25 18.64 0 181% 116 11

10.39 18.48 0.01 177% 114 11

11.08 18.50 0 166% 122 12

9.72 18.58 0.01 191% 107 10

Average 10.643 18.586 0.003 174.4% 117 10.8

Per
Process

2.1286 3.7172 0.0006 34.88% 23.4 2.16

20

43.4 77.32 0.5 179% 481 27

39.45 73.95 0.01 187% 455 27

39.48 73.91 0.02 187% 462 26

39.61 74.38 0 187% 468 25

39.54 74.22 0 187% 457 29

39.49 74.06 0.01 187% 451 28

39.5 74.02 0.01 187% 462 27

39.35 73.96 0 187% 455 28

39.53 74.23 0 187% 462 28

39.59 74.28 0.02 187% 455 26

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

Average 39.894 74.433 0.057 186.2% 460.8 27.1

Per
Process

1.9947 3.72165 0.00285 9.31% 23.04 1.355

200

450.07 851.53 0.1 189% 5246 209

389.75 740.30 0.03 189% 4589 206

398.6 754.68 0.06 189% 4686 208

410.02 779.63 0.1 190% 4733 209

397.65 756.07 0.06 190% 4677 207

392.36 744.62 0.06 189% 4634 206

411.02 779.69 0.03 189% 4777 209

410.23 778.83 0.16 189% 4828 210

391.65 743.29 5 189% 4582 212

397.01 752.61 0.04 189% 4641 205

Average 404.836 768.125 0.564 189.2% 4739.3 208.1

Per
Process

2.02418 3.840625 0.00282 0.946% 23.6965 1.0405

5

6.15 0 2.83 45% 5 12732

0.75 0 0.36 47% 4 10027

0.62 0 0.32 52% 2 10116

0.92 0 0.33 36% 5 14372

0.76 0 0.32 42% 0 10080

0.62 0 0.3 48% 5 10005

0.76 0 0.44 58% 3 11308

0.67 0 0.36 54% 4 10015

0.64 0 0.32 50% 4 10037

0.74 0 0.4 55% 4 13340

Average 1.263 0 0.598 48.7% 3.6 11203.2

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

SCHED_RR I/O
Bound

Per
Process

0.2526 0 0.1196 9.74% 0.72 2240.64

20

17.42 0.03 19.31 111% 32 55529

1.9 0 1.34 70% 4 48394

1.71 0 1.52 88% 5 46736

1.75 0 1.2 68% 4 43155

2.07 0 1.51 72% 6 41623

1.77 0 1.2 68% 4 47223

2.41 0 1.45 60% 5 39930

2.36 0.01 1.35 57% 2 46561

1.34 0 1.52 113% 5 48854

1.92 0 1.37 71% 2 52511

Average 3.465 0.004 3.177 77.8% 6.9 47051.6

Per
Process

0.17325 0.0002 0.15885 3.89% 0.345 2352.58

200

55.64 0.03 44.84 80% 39 483101

79.33 0.06 13.61 17% 4 559299

39.03 0.02 14.42 37% 5 598658

40.57 0.01 14.52 35% 6 532912

18.79 0.01 15.48 82% 5 583563

629.61 0.46 19.87 3% 13 644259

44.73 0.03 13.31 29% 11 589432

79.55 0.05 14.38 18% 19 526485

45.36 0.01 17.12 37% 24 562350

39.95 0 16.18 40% 17 559169

Average 107.256 0.068 18.373 37.8% 14.3 563922.8

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

Per
Process

0.53628 0.00034 0.091865 0.189% 0.0715 2819.614

Mixed

5

105.4 195.68 0.43 186% 1624 10116

102.32 186.31 0.46 182% 1572 9877

103.77 187.55 0.42 181% 1612 9952

108.78 188.71 0.46 173% 885 14270

104.53 186.8 0.45 179% 1608 10813

112.97 185.89 0.45 164% 1362 11426

105.24 193.27 0.35 183% 1699 13120

108.69 195.75 0.6 180% 1551 13546

104.73 187.43 0.4 179% 1639 14925

99.93 187.42 0.4 187% 1615 14527

Average 105.636 189.481 0.442 179.4% 1516.7 12257.2

Per
Process

21.1272 37.8962 0.0884 35.88% 303.34 2451.44

20

427.28 805.29 1.82 188% 8083 40711

403.13 761.57 1.75 189% 7208 47690

409.51 775.3 1.94 189% 7684 59531

417.86 787.84 1.87 188% 7781 41341

411.07 773.36 1.9 188% 7632 40124

431.08 780.64 2.06 181% 7457 60991

419.43 790.72 1.79 188% 7732 50021

426.61 788.12 1.59 185% 7714 40190

398.21 54.82 1.83 190% 7286 53737

407.13 765.24 1.87 188% 7677 53602

Average 415.131 708.29 1.842 187.4% 7625.4 48793.8

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

! !

Appendix B!
testscript!
! The file testscript begins by cleaning and then making all of the code necessary for running the tests.
Then it runs all 9 combinations of CPU tests. Then it runs all 9 combinations of I/O tests. Then it runs all 9
combinations of Mixed tests. Each test uses the linux time command to monitor how the scheduling policies
work. The results of the time command are written to three different files: cpu_results for the CPU tests,
io_reslts for the I/O tests, and mixed_results for the mixed tests.!
Makefile!
! The Makefile creates an input file for the rw.c and mixed.c files to read from. It also builds pi.c, rw.c, and
mixed.c, along with some other helpful files. It contains a clean command that removes all of the test output
files, executables, object files, temp files, and other log files.!
pi.c!
! The pi.c file takes two arguments: the scheduling policy and the number of processes to run. If neither
of these arguments are supplied the program quits. It then forks the specified number of processes. Each child
process then calculates pi through 100,000,000 iterations then returns. The parent waits on all children to
complete.!
rw.c!
! The rw.c file takes six arguments: the scheduling policy, number of processes to run, the total amount
of Bytes to transfer, the number of Bytes to transfer per write, the input filename, and the output filename. The

Per
Process

20.75655 35.4145 0.0921 9.37% 381.27 2439.69

200

4465.02 8411.64 15.54 188% 87778 480246

4240.26 8044.6 17 190% 81500 450353

4267.45 8079.38 15.15 189% 82042 462258

4327.13 8166.66 15.34 189% 82597 477147

4276.55 8115.11 15.49 190% 84020 382080

4203.33 7976.64 16.08 190% 82879 384907

4252.17 8047.96 14.91 189% 81895 493591

4258.83 8069.09 29.07 190% 83238 495707

4242.16 8049.5 16.52 190% 81573 379054

4235.56 8031.29 16.22 189% 82423 459482

Average 4276.846 8099.187 17.132 189.4% 82994.5 446482.5

Per
Process

21.38423 404.95935 0.8566 9.47% 4149.725 22324.125

Progra
m Type

Number
of

Processe
s

Elapsed
Real Time!
(seconds)

CPU
Seconds
As User

CPU
Seconds

As
Superviso

r

Percentage
of CPU
used by
this Job

Involuntar
y Switches

Voluntary
Switches

SCHEDULIN
G

program then forks the specified number of processes. Each child process reads from the input file then writes
to an output file until all Bytes have been transferred. The parent waits on all children to complete.!
mixed.c!
! The mixed.c file takes six arguments: the scheduling policy, number of processes to run, the total
amount of Bytes to transfer, the number of Bytes to transfer per write, the input filename, and the output
filename The program then forks the specified number of processes. Each child alternates in calculating pi
through 100,000,000 iterations and reading and writing data. They alternate ten times. The parent waits on all
children.

